A recurrent neural fuzzy network for word boundary detection in variable noise-level environments

نویسندگان

  • Gin-Der Wu
  • Chin-Teng Lin
چکیده

This paper discusses the problem of automatic word boundary detection in the presence of variable-level background noise. Commonly used robust word boundary detection algorithms always assume that the background noise level is fixed. In fact, the background noise level may vary during the procedure of recording. This is the major reason that most robust word boundary detection algorithms cannot work well in the condition of variable background noise level. In order to solve this problem, we first propose a refined time-frequency (RTF) parameter for extracting both the time and frequency features of noisy speech signals. The RTF parameter extends the (time-frequency) TF parameter proposed by Junqua et al. from single band to multiband spectrum analysis, where the frequency bands help to make the distinction between speech signal and noise clear. The RTF parameter can extract useful frequency information. Based on this RTF parameter, we further propose a new word boundary detection algorithm by using a recurrent self-organizing neural fuzzy inference network (RSONFIN). Since RSONPIN can process the temporal relations, the proposed RTF-based RSONFIN algorithm can find the variation of the background noise level and detect correct word boundaries in the condition of variable background noise level. As compared to normal neural networks, the RSONFIN can always find itself an economic network size with high-learning speed. Due to the self-learning ability of RSONFIN, this RTF-based RSONFIN algorithm avoids the need for empirically determining ambiguous decision rules in normal word boundary detection algorithms. Experimental results show that this new algorithm achieves higher recognition rate than the TF-based algorithm which has been shown to outperform several commonly used word boundary detection algorithms by about 12% in variable background noise level condition, It also reduces the recognition error rate due to endpoint detection to about 23%, compared to an average of 47% obtained by the TF-based algorithm in the same condition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-channel speech enhancement in variable noise-level environment

This paper discusses the problem of single-channel speech enhancement in variable noise-level environment. Commonly used, singlechannel subtractive-type speech enhancement algorithms always assume that the background noise level is fixed or slowly varying. In fact, the background noise level may vary quickly. This condition usually results in wrong speech/noise detection and wrong speech enhanc...

متن کامل

A New Recurrent Fuzzy Neural Network Controller Design for Speed and Exhaust Temperature of a Gas Turbine Power Plant

In this paper, a recurrent fuzzy-neural network (RFNN) controller with neural network identifier in direct control model is designed to control the speed and exhaust temperature of the gas turbine in a combined cycle power plant. Since the turbine operation in combined cycle unit is considered, speed and exhaust temperature of the gas turbine should be simultaneously controlled by fuel command ...

متن کامل

Image Backlight Compensation Using Recurrent Functional Neural Fuzzy Networks Based on Modified Differential Evolution

In this study, an image backlight compensation method using adaptive luminance modification is proposed for efficiently obtaining clear images.The proposed method combines the fuzzy C-means clustering method, a recurrent functional neural fuzzy network (RFNFN), and a modified differential evolution.The proposed RFNFN is based on the two backlight factors that can accurately detect the compensat...

متن کامل

Wavelet Energy-Based Support Vector Machine for Noisy Word Boundary Detection With Speech Recognition Application

Word boundary detection in variable noise-level environments by support vector machine (SVM) using Low-band Wavelet Energy (LWE) and Zero Crossing Rate (ZCR) features is proposed in this paper. The Wavelet Energy is derived based on Wavelet transformation; it can reduce the affection of noise in a speech signal. With the inclusion of ZCR, we can robustly and effectively detect word boundary fro...

متن کامل

Gas Flow Metering Using the PSO Optimized Interval Type- 2 Fuzzy Neural Network

Orifice flow meter is one of the most common devices in industry which is used for measuring the gas flow. This system includes an orifice plate, temperature and pressure transmitters, and a flow computer. The flow computer is used for collecting information related to temperature, pressure, and their differences under various conditions. Also the flow computer can calculate the flow rate of ga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society

دوره 31 1  شماره 

صفحات  -

تاریخ انتشار 2001